

Date of update:

SG-DR-T66

High-Temperature Heat Transfer Fluid (Modified Terphenyl Type)

Product Description

SG-DR-T66 is heat transfer fluid based on modified terphenyl, the materials is mainly from the distillation residue of Biphenyl process, SG-DR-T66 is one proven fluid and the world's most popular and customer satisfaction high temperature, liquid phase heat transfer fluid, In critical applications, SG-DR-T66 is the only choice.

Users can expect many years of reliable, trouble-free operation, even when operating continuously at the recommended maximum temperature of 350°C, It is miscible and interchangeable with other similarly constituted modified terphenyl fluids, such as: Therminol-66
The terphenyl (CAS No. 26140-60-3 and EC No. 247-477-3) is composed of a mixture of the orthometa- and para-isomers of terphenyl and a lesser amount of Quaterphenyl isomers.

The Temperature Range for use:

Liquid: 0 to 350 °C

Applications

It can be used in a wide variety of industries, such as:

- Chemicals
- PET production
- Synthetic Fiber plants
- Plastics
- Biodiesel
- Many other applications that require a high temperature heat transfer fluid.

Application Notice

- (1) Using temperature is 0 -350°C, and the best range is 0 -345°C.
- (2) Before use SG-DR-T66, the equipment must be clean and must use cleaning oil to get through flush equipment s in order to clear away precipitant.

- (3) It can be mix -used with overseas same type products: Therminol-66, Gilotherm -Th, Therm -S-900 heat transfer fluid
- (4) To ensure average heat transfer, firstly start -up valve circle, then escalate temperature; In the first time to use Modified Terphenyl, must slowly increase Temperature, and when temperature reach to 105 °C-130°C and 210°C-230°C period, it is necessary to keep some time.
- (5) During long time use of heat transfer fluid, its capability and properties is changing, we suggest that users should regularly sample and test it, if the performances have big changes, please think to replace at once.

Matters Related Use

- Flame impingement.
- Operating the heater above its rated capacity.
- Modifying the fuel-to-air mixing procedure to reduce the flame height and pattern. This can
 yield higher flame and gas temperatures together with higher heat flux in the shorter flame
 area.

Key Features

- Continuous operation capability up to 350 °C.
- Liquid-phase behavior throughout the full operating range (0–350 °C).
- Long-term thermal stability for trouble-free operation.
- Compatible and mix-usable with other modified terphenyl fluids.
- Suitable for a wide range of industrial processes requiring high temperature heat transfer.

Typical Properties

Item	Standard
Appearance	Clear Pale Yellow liquid
Constituent	Partial modified Terphenyl
Average Molecular Weight	252
Density(20°C) g/ml	1.000-1.010
Chroma(Pt-Co)	≤300
Flash Point °C(ASTM D-92)	184
Fire Point °C(ASTM D-92)	212
Auto-ignition Temperature °C(ASTM D-2155)	≥374
Water %	≤150ppm
Viscosity (40°C), mm2/s	29.6
Boling Range 10%	≥330°C
Boling Range 90%	≤392°C
Maximum Film Tem °C	375
Pour Point(°C)	-32
Expansion Coefficient(200°C)	0.000819/°C
S	≤5ppm
CL	≤5pm
Acid Value(mg KOH/g)	≤0.01
Normal Boiling Point	≥359°C

Properties At Different Temperature

Temperature		L	Liquid Density		Liquid Hea	Liquid Heat Capacity		nthalpy**	Heat of Vaporization		
° F	° C	lb/gal	lb³/ft	kg/m³	Btu/lb-° F [cal/g-° C]	kJ/kg•K	Btu/1b	kJ/kg	Btu/lb	kJ/kg	
20	-7	8. 56	64. 0	1026	0, 352	1.47	7. 0	16. 2	179. 6	417. 5	
30	-1	8. 53	63.8	1022	0.356	1.49	10.5	24. 4	178.5	414.	
40	4	8. 50	63. 6	1019	0.361	1.51	14. 1	32.7	177.3	412.	
60	16	8. 44	63. 1	1011	0.370	1.55	21.4	49. 7	175. 1	407	
80	27	8.38	62.7	1003	0.379	1.58	28. 9	67. 1	173. 0	402	
100	38	8. 32	62. 2	997	0.388	1.62	36. 5	84. 9	170.8	397	
120	49	8. 26	61.8	989	0.397	1.66	44. 4	103. 2	168. 7	392	
140	60	8. 19	61.3	982	0.406	1.70	52. 4	121.8	166. 7	387	
160	71	8. 13	60.8	974	0.415	1.74	60.6	140. 9	164. 7	382.	
180	82	8.07	60.4	967	0.424	1.78	69. 0	160. 5	162. 7	378.	
200	93	8.01	59. 9	960	0.434	1.81	77. 6	180.4	160.8	373.	
220	104	7. 94	59. 4	952	0.443	1.85	86. 4	200.8	158. 9	369.	
240	116	7. 88	59. 0	944	0.452	1.89	95. 3	221.6	157. 0	365	
260	127	7.82	58. 5	937	0.462	1.93	104. 5	242.8	155. 2	360.	
80	138	7. 75	58. 0	929	0. 471	1. 97	113.8	264. 5	153.3	356	
300	149	7.69	57. 5	921	0.480	2.01	123.3	286.6	151.5	352	
320	160	7.62	57.0	914	0.490	2.05	133. 0	309. 2	149.7	347	
340	171	7. 56	56. 5	906	0.500	2.09	142. 9	332.2	147.9	343.	
360	182	7. 49	56. 1	898	0.509	2. 13	153. 0	355.6	146. 1	339	
380	193	7. 43	55. 6	890	0.519	2. 17	163.3	379.5	144. 3	335.	
400	204	7. 36	55. 1	882	0.528	2.21	173. 7	403.8	142. 5	331	
420	216	7. 29	54. 5	874	0.538	2. 25	184. 4	428.6	140. 7	327	
440	227	7. 22	54. 0	866	0.548	2.29	195. 2	453.8	138.9	322	
460	238	7. 15	53. 5	857	0.558	2. 33	206.3	479.6	137.0	318.	
480	249	7. 08	53.0	849	0.568	2.38	217. 6	505.7	135. 2	314	
500	260	7.0	52. 5	840	0.578	2.42	229.0	532. 3	133. 3	309	
520	271	6. 94	51.9	832	0.588	2. 46	240.7	559. 4	131. 3	305.	
540	282	6.87	51.4	823	0.598	2.50	252. 5	587.0	129. 4	300.	
560	293	6. 79	50.8	814	0.608	2. 54	264. 6	615. 0	127. 4	296	
580	304	6.72	50.2	805	0.618	2.59	276.8	643. 5	125. 3	29	
600	316	6. 64	49.7	796	0.628	2. 63	289. 3	672. 5	123. 2	286	
620	327	6. 56	49.1	786	0.639	2.67	302. 0	701.9	121.0	281	
640	338	6. 48	48. 5	777	0.649	2.72	314. 9	731. 9	118.7	276	
650	345	6. 44	48. 2	772	0.655	2.74	321. 4	747.0	117. 6	273	
660	349	6.40	47. 9	767	0.660	2.76	328. 0	762. 3	116. 4	270	
680	360	6. 32	47. 3	757	0.671	2.81	341.3	793. 2	113. 9	264	
700	371	6. 23	46. 6	747	0.682	2.85	354. 8	824.7	111.4	259	

Properties At Different Temperature

Liquid 1	Thermal Condu	ctivity	L	iquid Viscosi	ty		Vapor P	ressure		Tempe	erature	
Btu/ ft-hr-° F	kcal/ m-hr-°C	•KW/m	lb/ft-hr	cSt [mm ² /s]	cP [mPa•s]	psia	mm Hg	kgf/cm²	kPa	° F	° (
0.0685	0. 1020	0. 1185	10070	4060	4160					20	-7	
0.0684	0. 1018	0. 1183	3820	1544	1579					30	-1	
0.0683	0. 1016	0. 1181	1679	681	694					40	4	
0.0681	0. 1013	0. 1177	456	186. 3	188. 4					60	16	
0.0678	0.1009	0. 1173	171.9	70.8	71. 0					80	2	
0.0675	0.1005	0. 1168	81.2	33. 7	33. 6					100	3	
0.0672	0. 1001	0. 1163	45. 0	18. 78	18. 58					120	4	
0.0669	0.0996	0. 1158	27. 9	11.74	11. 53					140	6	
0.0666	0.0991	0. 1152	18.79	7. 97	7. 77	0. 0016	0. 085	0. 00012	0. 011	160	7	
0.0662	0.0986	0. 1145	13. 48	5. 76	5. 57	0.0029	0. 15	0.00021	0.020	180	8	
0.0658	0.0980	0. 1139	10. 14	4. 37	4. 19	0. 0051	0. 26	0. 00036	0.035	200	9	
0.0654	0.0974	0. 1132	7. 91	3. 44	3. 27	0.0086	0. 45	0.00061	0.060	220	10	
0.0650	0.0967	0. 1124	6. 36	2. 78	2. 63	0.014	0.74	0.0010	0.098	240	1	
0.0646	0.0961	0. 1117	5. 23	2. 31	2. 16	0. 023	1. 2	0.0016	0.16	260	12	
0.0641	0.0954	0. 1108	4. 39	1. 951	1.813	0. 036	1. 9	0.0025	0. 25	280	1	
0.0636	0.0946	0. 1100	3.74	1. 677	1. 545	0.056	2. 9	0.0039	0.38	300	1	
0.0631	0.0939	0. 1091	3. 23	1. 461	1. 335	0. 084	4. 3	0.0059	0. 58	320	1	
0.0625	0.0931	0. 1082	2.82	1. 289	1. 167	0. 125	6. 4	0.0088	0.86	340	1	
0.0620	0.0922	0. 1072	2.49	1. 148	1. 031	0. 182	9. 4	0.0128	1.26	360	1	
0.0614	0.0914	0. 1062	2. 22	1. 032	0. 918	0. 262	13. 5	0.0184	1.80	380	1	
0.0608	0.0905	0. 1051	1. 995	0. 935	0.825	0. 370	19. 1	0. 0260	2, 55	400	2	
0.0602	0.0895	0. 1040	1.805	0.854	0.746	0. 517	26. 7	0. 0363	3. 56	420	2	
0.0595	0.0886	0. 1029	1.643	0. 785	0.679	0.712	36. 8	0. 0501	4.91	440	2	
0.0588	0.0876	0. 1018	1. 504	0.725	0.622	0. 969	50. 1	0.0681	6.68	460	23	
0.0581	0.0865	0. 1006	1. 384	0.674	0.572	1. 30	67. 4	0.0916	8.98	480	24	
0.0574	0.0855	0. 0993	1. 280	0.629	0. 529	1. 73	89. 6	0. 122	12.0	500	2	
0.0567	0.0843	0.0980	1. 188	0. 591	0. 491	2. 28	118	0.160	15. 7	520	2'	
0.0559	0.0832	0.0967	1.108	0. 557	0.458	2. 97	154	0.209	20. 5	540	28	
0.0552	0.0821	0.0954	1.037	0. 527	0.429	3. 84	199	0.270	26. 5	560	2	
0.0543	0.0809	0.0940	0.974	0. 500	0.403	4. 91	254	0.346	33. 9	580	3	
0.0535	0.0796	0.0926	0.918	0. 477	0.379	6. 24	323	0. 439	43.0	600	3	
0.0527	0.0784	0.0911	0.868	0.456	0.359	7. 85	406	0. 552	54. 2	620	3	
0.0518	0.0771	0. 0896	0.822	0. 438	0.340	9. 81	508	0.690	67. 7	640	3	
0.0514	0.0764	0. 0888	0.801	0. 429	0. 331	10. 9	566	0.769	75. 4	650	3	
0.0509	0.0757	0.0880	0.781	0. 421	0.323	12. 2	630	0.856	83. 9	660	3	
0.0500	0.0744	0. 0865	0.744	0. 407	0. 308	15. 0	776	1.05	103	680	3	
0.0491	0.0730	0. 0848	0.711	0. 393	0. 294	18. 4	949	1. 29	127	700	31	

Typical Applications

SG-DR-T66 is suitable for a diverse range of high-temperature systems, including:

- Chemical processing plants
- PET manufacturing
- Synthetic fiber production
- Plastic and polymer processes
- Biodiesel production
- Any system requiring high-temperature liquid-phase heat transfer fluid

•

Usage Guidelines

System Preparation

• Equipment must be thoroughly cleaned before filling. Cleaning oil should be used to remove residues or precipitates.

Startup Procedure

- Begin with circulation only before heating.
- Increase temperature gradually.
- Hold at 105–130 °C and 210–230 °C to ensure uniform heating and fluid conditioning.

Maintenance

- Periodically sample and test the fluid.
- If performance deviates significantly, replacement is recommended.

Third Party Test Report

lements in used Lube Oils and Base ils by ICP-AES	ASTM D5185-13e1				
Aluminium Content	<	1	mg/kg	**	
Barium Content	<	1	mg/kg		**
Boron Content	<	1	mg/kg		**
Cadmium Content §	<	1	mg/kg		
Calcium Content	<	1	mg/kg	**	
Chromium Content	<	1	mg/kg		
Copper Content	<	1	mg/kg	44	
Lead Content	<	1	mg/kg	-	**
Magnesium Content	<	1	mg/kg	**	77
Manganese Content	<	1	mg/kg		**
Molybdenum Content	<	1	mg/kg	700	••
Nickel Content	<	1	mg/kg	22	**
Phosphorus Content	<	1	mg/kg	**	77
Potassium Content	<	1	mg/kg	<u></u>	**
Silicon Content	<	:1	mg/kg	**	77
Sodium Content	<	:1	mg/kg		
Tin Content	<	:1	mg/kg	77.	77
Titanium Content	<	:1	mg/kg		**
Vanadium Content	<	:1	mg/kg	**	
	<	:1	mg/kg		**
Zinc Content Iron Content		:1	mg/kg		

§ - Analyte not in published method scope

The results shown in this test report specifically refer to the sample(s) tested as received unless otherwise stated. All tests have been performed using the latest revision of the methods indicated, unless specifically marked otherwise on the report. Precision parameters apply in the determination of the below results. Users of the data shown on this report should refer to the latest published revisions of ASTM D3244; IP 367 and ISO 4259 and when utilising the test data to determine conformance with any specification or process requirement. With respect to the UOP methods listed in the report below the user is referred to the method and the statement within it specifying that the precision statements were determined using UOP Method 999. This Test Report is issued under the Company's General Conditions of Service (copy available upon request or on the company website at www.sgs.com). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. This report shall not be reproduced except in full, without the written approval of the laboratory.

PROPERTY	METHOD	RESULT	UNITS	MIN	MAX	
Cleveland Flash Point (Open cup)	ASTMD92-12b	184	°C		**	
Cleveland Fire Point (Open cup)	ASTM D92-12b	216	*C	7.94	**	
Acid Number (Inflection end-point)	ASTM D664-11a(Method A)	0.03	mg KOH/g			
Distillation of Petroleum Products at	ASTM D86-12					
Atmospheric Pressure						
5% Recovered at		341.0	°C	**		
10% Recovered at		342.0	°C		200	
15% Recovered at		343.0	°C		**	
20% Recovered at		344.0	°C		200	
25% Recovered at		344.0	°C	22	125	
30% Recovered at		345.0	°C	1.00	**	
35% Recovered at		345.0	°C	***	44	
40% Recovered at		346.0	°C	. **	***	
45% Recovered at		347.0	*C	***		
50% Recovered at		348.0	*C			
55% Recovered at		348.0	°C	**	94	
60% Recovered at		350.0	°C			
65% Recovered at		351.0	°C	**		
70% Recovered at		353.0	°C	:366		
75% Recovered at		357.0	°C	**		
80% Recovered at		361.0	°C	**	144	
85% Recovered at		371.0	°C	100	-	
90% Recovered at		387.0	°C			
91% Recovered at		393.0		100		
Kinematic Viscosity at 100°C	ASTM D445-15	3.948	mm²/s	-	990	
Kinematic Viscosity at 40°C	ASTM D445-15	29.36	mm²/s	1.77		
	** End of Analy	ical Results	••			

